The Message Passing Interface

!'_ (MPI)

SAN DIEGIO SUPERCOMPUTER
CENTER

www.sdsc.edu

i Message Passing

= Each processor runs a process
. = Processes communicate by
P||P P

exchanging messages
= They cannot share memory in the

\ sense that they cannot address the
network same memory cells

= The above is a programming model and things may look different in
the actual implementation (e.g., MPI over Shared Memory)
= Message Passing is popular because it is general:

= Pretty much any distributed system works by exchanging messages, at
some level

= Distributed- or shared-memory multiprocessors, networks of
workstations, uniprocessors

= [t is not popular because it is easy (it’s not)

i MPI Concepts

= Fixed number of processors

= When launching the application one must specify the number of

processors to use, which remains unchanged throughout
execution

= Communicator

= Abstraction for a group of processes that can communicate
= A process can belong to multiple communicators

= Makes is easy to partition/organize the application in multiple
layers of communicating processes

=« Default and global communicator: MPI_COMM_WORLD
= Process Rank

=« The index of a process within a communicator

= Typically user maps his/her own virtual topology on top of just
linear ranks

= ring, grid, etc.

i MPI Communicators

MPI_COMM_WORLD

‘_L A First MPI Program

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {

Has to be called first, and once
MPI init(&argc, &argv) ;

MPI Comm rank (MPI_COMM_WORLD, &my_rank) ;
MPI Comm size (MPI_ COMM_ WORLD, &n) ;
gethostname (hostname, 128) ;
if (my_rank == 0) { /* master */

printf (“I am the master: %$s\n”,hostname);
} else { /* worker */

printf (“I am a worker: %s (rank=%d/%d)\n”,

int my_rank, n;

char hostname

hostname,my_rank,n-1);

}
MPI Finalize () ;

exit (0);
) Has to be called last, and once

i Compiling/Running it

Link with libmpi.a
= Run with mpirun
% mpirun —-np 4 my_program <args>

= requests 4 processors for running my_program with command-line
arguments

= See the mpirun man page for more information

= in particular the -machinefile option that is used to run on a
network of workstations

= Some systems just run all programs as MPI programs and no
explicit call to mpirun is actually needed

Previous example program:
mplrun -np 3 -machinefile hosts my_program

oc H

I am the master: somehostl
I am a worker: somehost?2 (rank=2/2)
I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected o the process calling mpirun)

i Point-to-Point Communication

P _/p

= Data to be communicated is described by three things:

= address
= data type of the message
= length of the message

= Involved processes are described by two things
= communicator
= rank

= Message is identified by a “tag” (integer) that can be
chosen by the user

i Point-to-Point Communication

= WO modes of communication:

= Synchronous: Communication does not
complete until the message has been
received

= Asynchronous: Completes as soon as the
message is “on its way”, and hopefully it gets
to destination

= MPI provides four versions
= synchronous, buffered, standard, ready

Synchronous/Buffered sending in MPI

= Synchronous with MPI_Ssend

= The send completes only once the receive has
succeeded
= copy data to the network, wait for an ack
= The sender has to wait for a receive to be posted
= No buffering of data

= Buffered with MPI_Bsend

= The send completes once the message has been
buffered internally by MPI
= Buffering incurs an extra memory copy
= Doe not require a matching receive to be posted

= May cause buffer overflow if many bsends and no matching
receives have been posted yet

i Standard/Ready Send

s Standard with MPI_Send

= Up to MPI to decide whether to do synchronous or
buffered, for performance reasons

= The rationale is that a correct MPI program should
not rely on buffering to ensure correct semantics

= Ready with MPI_Rsend

= May be started on/y if the matching receive has been
posted

= Can be done efficiently on some systems as no hand-
shaking is required

Example: Sending and Receiving

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
int i, my_rank, nprocs, x[4];
MPI Init (&argc, &argv) ;
MPI Comm rank (MPI_COMM_WORLD, &my_rank) ;
{ /* master */

destination
and
source

if (my_rank == 0)
x[0]=42,;, x[1]=43; x[2]=44; x[3]

MPI Comm size (MPI COMM WO
for (i=1;i<nprocs;
MPI Send(x, 4,

} else { /* worker */

MPI_ Status statusz
MPT Redvlx, 4, [[INT, 0,0, MPT_comM WJRLD, sstdtus) ;

}
MP:F—Flnallze OF Max number of Can be examined via calls
exit (0); elements to receive like MPI_Get count(), etc.

RED)7—
user-defined
tag

i Non-blocking Communication

= MPI_Issend, MPI_Ibsend, MPI_Isend, MPI Irsend,
MPI Irecv

MPI_ Request request;
MPI Isend(&x,1,MPI_INT,dest, tag,communicator, &request);

MPI Irecv(&x,1,MPI_INT, src,tag,communicator, &request);

= Functions to check on completion: MPI_Wait,
MPI_Test, MPI_Waitany, MPI_Testany, MPI_Waitall,
MPI_Testall, MPI_Waitsome, MPI_Testsome.
MPI Status status;

MPI Wait (&request, &status) /* block */
MPI Test (&request, &status) /* doesn’t block */

i Collective Communication

= Operations that allow more than 2 processes to
communicate simultaneously
= barrier
= broadcast
= reduce

= All these can be built using point-to-point
communications, but typical MPI
implementations have optimized them, and it’s
a good idea to use them

= In all of these, all processes place the same call
(in good SPMD fashion), although depending on
the process, some arguments may not be used

i Barrier

= Synchronization of the calling processes

» the call blocks until all of the processes have
placed the call

= No data is exchanged

MPI Barrier (MPI COMM WORLD)

i Broadcast

= One-to-many communication

= Note that multicast can be implemented
via the use of communicators (i.e., to
Create processor groups)

MPI Bcast (x, 4, MPI|INT, O,
MPTI COMM WORLD)

Rank of the root

i Scatter

= One-to-many communication
= Not sending the same message to all

root

destinations

MPI Scatt

Send buffer <
Ll
Data to send to each

rix, y, 10Q, MPI_INT, O,

Rank of the sending proc

i Gather

= Many-to-one communication
= Not sending the same message to the root

w ” I N
root
MPI_ Gatgelr (H{

Send buffer
el
Data to send from each

MPI__Ii]T, y, 100, MPI_INT, 0, MPI_COMM WORLD)

Rank of the receiving proc.

‘_L Gather-to-all

= Many-to-many communication
= Each process sends the same message to all
= Different Processes send different messages

MPI Allgat E 100, MPT]|[INT| vy, 100, MPI_INT, MPI_COMM_WORLD)

Send buffer

Receive buffer

Data to send to each

‘_L All-to-all

= Many-to-many communication
= Each process sends a different message to each other process

ock j on proc i

MPI_ Allto 100, MPI_INT, MPI_COMM_WORLD)

Data to receive

o

Data to send to each Receive buffer

i Reduction Operations

= Used to compute a result from data that is
distributed among processors

= often what a user wants to do anyway

= SO why not provide the functionality as a single API
call rather than having people keep re-implementing
the same things

= Predefined operations:
= MPI_MAX, MPI_MIN, MPI_SUM, etc.

= Possibility to have user-defined operations

i MPI_Reduce, MPI_Allreduce

= MPI Reduce: result is sent out to the root

» the operation is applied element-wise for each
element of the input arrays on each processor

= MPI_Allreduce: result is sent out to everyone

r, 10, MPI_INT, MPI_|MAX, 0, MPI_COMM_WORLD)

MPI Reduc :

MPI Allred El , 10, MPI_INT, MPI_MAX, MPI_COMM_WORLD)

* MPI_Reduce example

MPI_ Reduce (sbuf,rbuf,6,MPI_INT,MPI_SUM, 0,MPI_COMM_WORLD)

PO

P1

P2

P3

sbuf
310412 8112 1]

rbuf
PO [11][16][20][22][24][18]

* MPI Scan: Prefix reduction

PO

P1

P2

P3

process 0 to I.

sbuf
310412 8112 1]

PO

P1

P2

P3

= process i receives data reduced on

rbuf
310412 8112 1]

MPI_ Scan (sbuf,rbuf,6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

i User-defined reduce operations

MPI_ Op_create (MPI_User_function
*function,

int commute, MPI_Op *op)

= pointer to a function with a specific prototype
= commute (0 or 1) allows for optimization if true

typedef void MPI_User function(void *a,
void *b, 1nt *len, MPI_Datatype
*datatype) ;

» b[i] = a[i] op b[i], for i=0,...,len-1

i MPI_Op_create example

volid myfunc(void *a, void *b, int *len, MPI_Datatype

*dtype) {
int 1i;
for (i = 0; 1 < *len; ++1i) ((Int*)b) [1] =
((int*)b) [1] + ((int*)a) [1];
}
int main(int argc, char *argv[]) {

int myrank, nprocs, sendbuf, recvbuf;
MPI_Op myop;

MPI_TInit (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &nprocs),;
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
MPI_Op_create (myfunc, 1, &myop);

sendbuf = 2*myrank+1; // odd
numbers

MPI_Reduce (&sendbuf, &recvbuf, 1, MPI_INT, myop, O,

MPI_ COMM_WORLD) ;
if (myrank == 0) printf("%$d"2 = %d\n", nprocs,

™ \

i More Advanced Messages

= Reqgularly strided data

Blocks/Elements of a matrix

s Data structure

struct {
int a;
double b;
}

m A set of variables

int a; double b; int x[12];

i Derived Data Types

= A data type is defined by a “type map”
= Set of <type, displacement> pairs
= Created at runtime in two phases

« Construct the data type from existing types
« Commit the data type before it can be used

= Simplest constructor: contiguous type

int MPI_Type_ contiguous (int count,
MPI_ Datatype oldtype,
MPI_ Datatype *newtype)

MPI_Type_contiguous example

int buffer[100];

MPI_Datatype chvec;

MPI_Type_contiguous (20,
&chvec) ;

MPI_ Type commit (&chvec) ;

MPI_CHAR,

MPI Send(buffer,1, chvec,1,44,MPI COMM WOR

LD);
MPI Type_ free (&chvec);

MPI_Type_indexed()

int MPI_Type_indexed(int count,
int *array_of_blocklengths,
int *array_of_displacements,
MPI_ Datatype oldtype,
MPI_ Datatype *newtype)

MPI_Type_indexed example

int vector[4][3] = { 1L, 12, 13, 21, 22|, 23,| 31, 32, 33,
41, 42, 43 };

int wvector([4] [3] { O

int blocklengthsi12]-—= {2, 2};

int displacements[2] = {4, 10}, int rank;

MPI_Datatype mytype;

MPI_Status mystatus;

MPI_TInit (&argc, &argv);

MPI_Type_indexed (4, blocklengths, displacements, MPI_INT,
&mytype) ;

MPI_Type_commit (&mytype) ;

MPI Comm_rank (MPI COMM_WORLD, &rank);

1if (rank == 0) MPI_Send(vector, 1, mytype, 1, 0,
MPI_ COMM_WORLD) ;

else {

MPI_Recv (wvector, 1, mytype, 0, 0, MPI_COMM_WORLD,
&mystatus) ;

for (1 = 0; 1 < 4; i++) { printf("\n");
for (3j=0; J < 3; Jj++) printf ("%024d ",

i MPI_Type_struct()

int MPI_Type_ struct (int count,

int *array_of_ blocklengths,
MPI Aint *array_of_displacements,

MPI_Datatype *array_of_types,
MPI_Datatype *newtype)

i MPI_Type_vector example

= Sending the 5th column of a 2-D matrix:

double results[IMAX] [JMAX];

MPI_Datatype newtype;

MPI_Type_vector (IMAX, 1, JMAX, MPI_DOUBLE, &newtype);
MPI_Type_Commit (&newtype);

MPI_Send (& (results[0][5]), 1, newtype, dest, tag, comm);

JMAX IMAX
A

4 N\
SEEEEEENEEEEEENEEEEEETEEEEEETEE

SN— __
V

IMAX * JMAX

IMAX

