The Message Passing Interface

! (MPI)

SAN DIEGIO SUPERCOMPUTER
CENTER

www.sdsc.edu

Message Passing

exchanging messages

I
= Each processor runs a process
o = Processes communicate by
P|IP P

= They cannot share memory in the

sense that they cannot address the
network same memory cells

The above is a programming model and things may look different in
the actual implementation (e.g., MPI over Shared Memory)
Message Passing is popular because it is general:

= Pretty much any distributed system works by exchanging messages, at
some level

= Distributed- or shared-memory multiprocessors, networks of
workstations, uniprocessors

It is not popular because it is easy (it’s not)

MPI Concepts

Fixed number of processors
= When launching the application one must specify the number of
processors to use, which remains unchanged throughout
execution
Communicator
= Abstraction for a group of processes that can communicate
= A process can belong to multiple communicators

= Makes is easy to partition/organize the application in multiple
layers of communicating processes
= Default and global communicator: MPI_COMM_WORLD

Process Rank
= The index of a process within a communicator

= Typically user maps his/her own virtual topology on top of just
linear ranks

= ring, grid, etc.

MPI Communicators

1

User-created
1municator

MPI_COMM_WORLD

eje
(J

a4 La

User-created
Communicator

4 La

A First MPI Program

1

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {

int my_rank, n; i

T - Has to be called first, and once
char hostname -

MPI_initT{&argc, &argv) ;

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &n) ;
gethostname (hostname, 128) ;
if (my_rank == 0) { /* master */

printf (“I am the master: %$s\n”,hostname);

} else { /* worker */
printf (“I am a worker: %s (rank=%d/%d)\n”,
hostname,my_rank,n-1);
}
MPI_Finalize();

exit (0);
} Has to be called last, and once

Compiling/Running it

oo ®

Link with libmpi.a
Run with mpirun
% mpirun -np 4 my_program <args>
= requests 4 processors for running my_program with command-line
arguments
= see the mpirun man page for more information
= in particular the -machinefile option that is used to run on a
network of workstations

Some systems just run all programs as MPI programs and no
explicit call to mpirun is actually needed

Previous example program:

mpirun -np 3 -machinefile hosts my_program
I am the master: somehostl

I am a worker: somehost2 (rank=2/2)

I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected o the process calling mpirun)

| Point-to-Point Communication

Data to be communicated is described by three things:
= address
= data type of the message
= length of the message
Involved processes are described by two things
= communicator
= rank
Message is identified by a “tag” (integer) that can be
chosen by the user

Point-to-Point Communication

= Two modes of communication:

» Synchronous: Communication does not
complete until the message has been
received

» Asynchronous: Completes as soon as the
message is “on its way”, and hopefully it gets
to destination

= MPI provides four versions
» synchronous, buffered, standard, ready

Synchronous/Buffered sending in MPI

= Synchronous with MPI_Ssend

= The send completes only once the receive has
succeeded
= copy data to the network, wait for an ack
» The sender has to wait for a receive to be posted
» No buffering of data

» Buffered with MPI_Bsend

= The send completes once the message has been
buffered internally by MPI
» Buffering incurs an extra memory copy
= Doe not require a matching receive to be posted

» May cause buffer overflow if many bsends and no matching
receives have been posted yet

Standard/Ready Send

= Standard with MPI_Send

= Up to MPI to decide whether to do synchronous or
buffered, for performance reasons

= The rationale is that a correct MPI program should
not rely on buffering to ensure correct semantics

= Ready with MPI_Rsend

= May be started only if the matching receive has been
posted

= Can be done efficiently on some systems as no hand-
shaking is required

Example: Sending and Receiving

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
int i, my_rank, nprocs, x[4];
MPI_Init (&argc, &argv) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
if (my_rank == 0) { /* master */
x[0]1=42; x[1]=43; x[2]1=44; x[3]1=45

destination
and
source

for (i=1;i<nprocsgi
MPI_Send (x, 4, Mp]

} else { /* worker */
MPI_Status statusg
MPIiRe x,4,MP !H\ 0,0, MP17COMM7WC1RLD, &st%tus) ;

}

MPI_Finalize()

user-defined
tag

i # Max number of Can be examined via calls
exit (0); elements to receive like MPI_Get_count(), etc.

| Non-blocking Communication

= MPI_Issend, MPI_Ibsend, MPI_Isend, MPI_Irsend,
MPI_Irecv

MPI_Request request;
MPI_Isend(&x,1,MPI_INT,dest,tag,communicator, &request) ;

MPI_Irecv(&x,1,MPI_INT, src,tag,communicator, &request) ;

= Functions to check on completion: MPI_Wait,
MPI_Test, MPI_Waitany, MPI_Testany, MPI_Waitall,
MPI_Testall, MPI_Waitsome, MPI_Testsome.
MPI_Status status;
MPI_Wait (&request, &status) /* block */
MPI_Test (&request, &status) /* doesn’t block */

Collective Communication

= Operations that allow more than 2 processes to
communicate simultaneously
= barrier
= broadcast
= reduce

= All these can be built using point-to-point
communications, but typical MPI
implementations have optimized them, and it’s
a good idea to use them

= In all of these, all processes place the same call
(in good SPMD fashion), although depending on
the process, some arguments may not be used

Barrier

= Synchronization of the calling processes

» the call blocks until all of the processes have
placed the call

= No data is exchanged

MPI_ Barrier (MPI_COMM_WORLD)

Broadcast

|
= One-to-many communication

= Note that multicast can be implemented
via the use of communicators (i.e., to
create processor groups)

MPI_Bcast (x, 4, MPIT, 0,
MPT_COMM_WORLD)

Rank of the root

| Scatter

= One-to-many communication
= Not sending the same message to all

| //\

MPI_Scatt
MPI_COQMT

| | root

destinations

X, 00, MP

v, 10 PT_INT, O,
D)

Send buffer

| Rank of the sending proc

| Data to send to each |

| Gather

= Many-to-one communication
= Not sending the same message to the root

| . sources

| \ \ | / |
| | | | | | root
bld.P.I_GatgeIr(H, :Lloo, MPILI‘IT, Iy, lOO,_COMM_WORLD)

Send buffer \ | Rank of the receiving proc.
| Data to send from each |

Gather-to-all

= Many-to-many communication
= Each process sends the same message to all
= Different Processes send different messages

CT T 1 /3 LT T 1 I .. . [T |

MPI_Allgat(x, 100, M 100,

Send buffer

| Data to send to each |

MPI_INT, MPI_COMM_WORLD)

Data to receive

All-to-all
|

= Many-to-many communication
= Each process sends a different message to each other process

MPI_INT, MPI_COMM_WORLD)

Data to receive

MPI_Alltod 100, M, , 100,

Send buffer

| Data to send to each |

Reduction Operations

= Used to compute a result from data that is
distributed among processors
= often what a user wants to do anyway
= S0 why not provide the functionality as a single API

call rather than having people keep re-implementing

the same things
» Predefined operations:

= MPI_MAX, MPI_MIN, MPI_SUM, etc.

= Possibility to have user-defined operations

MPI_Reduce, MPI_Allreduce

s MPI_Reduce: result is sent out to the root

= the operation is applied element-wise for each
element of the input arrays on each processor

= MPI_Allreduce: result is sent out to everyone

MAX, 0, MPI_COMM_WORLD)

MPI_Reduce (¥, |r,| 10, MPI_INT, MPI

| input array | I output array ” array size |

MPI_Allred 5. , 10, MPI_INT, MPI_MAX, MPI_COMM_WORLD)

MPI_Reduce example

MPI_Reduce (sbuf,rbuf, 6,MPI_INT,MPI_SUM, 0, MPI_COMM_WORLD)

sbuf

PO [37M41 2781 @21 0T
rbuf

P1 5127 50 [0 710 31 PO [Tl [20 22 2% [i8]

P2 214141 [0l 4151

P3 [67 91 (31 [1]

MPI_Scan: Prefix reduction

|
m process i receives data reduced on
process 0 to i.

sbuf rbuf
PO [37 4127 81 @211 PO [37[4] 27081 [21
P1 57 27 057 [T 71 [P1 [87 61 7197 {9l [12]
P2 2704141 [0l 4150 P2 [107[10] 11119123117
P3 [el 91 31 i P3 [11][16][121[22][24][18]

MPI_Scan (sbuf,rbuf, 6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

User-defined reduce operations

MPI_Op_create (MPI_User_function
*function,

int commute, MPI_Op *op)
= pointer to a function with a specific prototype
= commute (0 or 1) allows for optimization if true

typedef void MPI_User_ function(void *a,
void *b, int *len, MPI_Datatype
*datatype) ;
= b[i] = a[i] op b[i], for i=0,...,len-1

MPI_Op_create example
I

void myfunc(void *a, void *b, int *len, MPI_Datatype
*dtype) A

int 1i;
for (i = 0; 1 < *len; ++1i) ((int*)b) [1i] =
((int*)b) [1] + ((int*)a)[i];
}
int main(int argc, char *argv([]) {

int myrank, nprocs, sendbuf, recvbuf;
MPI_Op myop;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
MPI_Op_create (myfunc, 1, &myop);

sendbuf = 2*myrank+1; // odd
numbers

MPI_Reduce (&sendbuf, &recvbuf, 1, MPI_INT, myop, O,

MPI_COMM_WORLD) ;
if (myrank == 0) printf("$d"2 = %d\n", nprocs,

More Advanced Messages

|
= Regularly strided data

Blocks/Elements of a matrix

= Data structure

struct {
int a;
double b;
}

» A set of variables

int a; double b; int x[12];

Derived Data Types

= A data type is defined by a “type map”
= set of <type, displacement> pairs

= Created at runtime in two phases
» Construct the data type from existing types
» Commit the data type before it can be used

= Simplest constructor: contiguous type

int MPI_Type_contiguous (int count,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_contiguous example

int buffer[1007];
MPI_Datatype chvec;

MPI_Type_contiguous (20, MPI_CHAR,
&chvec) ;

MPI_Type_commit (&chvec) ;

MPI_Send(buffer,1,chvec,1,44,MPI_COMM_WOR
LD) ;

MPI_ Type_ free(&chvec);

MPI_Type_indexed()

int MPI_Type_indexed(int count,
int *array_of_blocklengths,
int *array_of_displacements,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

[len(o]] [tenty [[] | .

MPI_Type_indexed example

int vector[4][3] =
41, 42, 43 };

int wvector([4] [3]

int blocklengthsf 2]

int displacements[2] = {4, 10}; int rank;

MPI_Datatype mytype;

MPI_Status mystatus;

MPI_Init (&argc, &argv);

MPI_Type_indexed (4, blocklengths, displacements, MPI_INT,
smytype) ;

MPI_Type_commit (&mytype) ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0) MPI_Send(vector, 1, mytype, 1, O,
MPI_COMM_WORLD) ;

else {

MPI_Recv (wvector, 1, mytype, 0, 0, MPI_COMM_WORLD,
&mystatus) ;
for (i = 0; 1 < 4; i++) { printf("\n");
for (j=0; j < 3; Jj++) printf("s02d ",

MPI_Type_struct()

int MPI_Type_ struct (int count,
int *array_of_blocklengths,
MPI_Aint *array_ of_displacements,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype)

MPLINT | | MP1_DOUBLE My_weird_type |

MPI_Type_vector example

IMAX

= Sending the 5th column of a 2-D matrix:
double results[IMAX] [JMAX];
MPI_Datatype newtype;
MPI_Type_vector (IMAX, 1, JMAX, MPI_DOUBLE, &newtype);
MPI_Type_Commit (&newtype);
MPI_Send (& (results[0][5]), 1, newtype, dest, tag, comm);

JMAX JMAX

f—)%

IMAX * JMAX

